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Abstract 14 

 15 

Nitrous acid (HONO), one of the reactive nitrogen oxides (NOy), plays an important role 16 

in the formation of ozone (O3) and fine aerosols (PM2.5) in the urban atmosphere. In this study, 17 

a simulation model of Reactive Nitrogen species using Deep neural network model (RND) was 18 

constructed to calculate the HONO mixing ratios through a deep learning technique using 19 

measured variables. A Python-based Deep Neural Network (DNN) was trained, validated, and 20 

tested with HONO measurement data obtained in Seoul during the warm months from 2016 to 21 

2019. A k-fold cross validation and test results confirmed the performance of RND v1.0 with 22 

an Index Of Agreement (IOA) of 0.79 ~ 0.89 and a Mean Absolute Error (MAE) of 0.21 ~ 0.31 23 

ppbv. The RNDV1.0 adequately represents the main characteristics of HONO and thus, RND 24 

v1.0 is proposed as a supplementary model for calculating the HONO mixing ratio in a high-25 

NOx environment.  26 

 27 

1. Introduction 28 

 29 
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Reactive nitrogen oxides (NOy) plays an important role in critical environmental issues 30 

concerning the Earth’s atmosphere, spanning from local air pollution to global climate change 31 

(Sun et al., 2011;Ge et al., 2019). The oxidation of NO to NO2, and finally to HNO3, is the 32 

backbone of the chemical mechanism producing ozone (O3) and PM2.5 (particulate matter of 33 

size ≤ 2.5 μm), and determines the oxidization capacity of the atmosphere. However, 34 

observational constraints on individual species limit the understanding of key mechanisms and, 35 

consequently, problem solving. In the atmosphere, NOy is a family of nitrogenous compounds 36 

including NOx (=NO + NO2), HONO, NO3, HNO3, organic nitrates (e.g., PAN), and particulate 37 

NO3-. These species are produced and recycled through photochemical reactions until they are 38 

removed through wet or dry deposition (Liebmann et al., 2018;Brown et al., 2017;Wang et al., 39 

2020;Li et al., 2020). In recent years, the NOy cycle has drawn increased attention because of 40 

the heterogeneous reactions leading to O3 and PM2.5 formation (Brown et al., 2017). Modeling 41 

studies have also shown that the lack of NOy measurements hinder a comprehensive 42 

understanding of the heterogeneous reactions (Anderson et al., 2014;Wang et al., 2017b;Chen 43 

et al., 2018). 44 

HONO, one of the NOy species, is an early morning source of OH radicals in the urban 45 

atmosphere (Brandenburger et al., 1998;Xing et al., 2019;Alicke et al., 2002;Ryan et al., 46 

2018;Gil et al., 2020;Xue et al., 2020). Thus, there has been a steady effort to determine the 47 

atmospheric level of HONO using various methods such as a long path absorption photometer 48 

(LOPAP) (Kleffmann et al., 2006;Xue et al., 2019), chemical ionization mass spectrometry 49 

(CIMS) (Levy et al., 2014;Roberts et al., 2010), ion chromatography (IC) (VandenBoer et al., 50 

2014;Gil et al., 2020;Ye et al., 2016;Xu et al., 2019), and quantum cascade tunable infrared 51 

laser differential absorption spectrometry (QC-TILDAS) (Lee et al., 2011;Gil et al., 2021). 52 

These studies have reported a considerable level of HONO in the early morning. On the other 53 

hand, the model results are still significantly lower than the levels observed in big cities such 54 

as Beijing, where HONO formation involving various surfaces is a major contributor in this 55 

underestimation (Liu et al., 2019). 56 

Recently, a multi-layer artificial neural network, referred to as a Deep Neural Network 57 

(DNN), has been adopted in the atmospheric sciences because of its powerful ability to process 58 

large amounts of data, allowing improvements in the performance of conventional models 59 

(Reichstein et al., 2019;Cui and Wang, 2021). DNN employs a statistical method to obtain the 60 
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optimum solution for the target species without prior information on the physicochemical 61 

processes. In this study, we aimed to develop a user-friendly Reactive Nitrogen species 62 

simulation model using simple DNN (RND) based on ground measurements in a highly 63 

polluted urban area. Since this is the first attempt to calculate HONO mixing ratios using a first 64 

version of RND model (RNDv1.0), we describe the entire modeling process and evaluate the 65 

model results by comparing them with the measurements. 66 

 67 

2. Model description 68 

 69 

The development of RNDv1.0 model follows the systematic steps including collecting data, 70 

preprocessing data, building the DNN, training and validating the model, and testing the 71 

performance of the model (Figure 1). The RNDv1.0 was written in Python and necessary 72 

libraries to build and operate RNDv1.0 are listed in Table 1.  73 

 74 

2.1. Collection of measurement data 75 

 76 

As the first step constructing the RNDv1.0, measurement data were obtained including 77 

HONO, reactive gases, and meteorological parameters. The HONO mixing ratio was measured 78 

using a Quantum Cascade – Tunable Infrared Laser Differential Absorption Spectrometer (QC-79 

TILDAS) system in Seoul during May–June 2016, June 2018, and April-June 2019 (Lee et al., 80 

2011;Gil et al., 2021). When testing and evaluating atmospheric HONO measurement methods, 81 

QC-TILDAS has been chosen as the reference method for comparing ambient HONO mixing 82 

ratios measured using several different techniques owing to its advantages of low detection 83 

limits (~ 0.1 ppbv) and high temporal resolution (Pinto et al., 2014). More details on 84 

measurements can be found elsewhere (Gil et al., 2021). HONO was measured at Olympic Park 85 

(37.52°N, 127.12°E) during the Korea-United States Air Quality (KORUS-AQ) study in 2016 86 

(Kim et al., 2020;Gil et al., 2021), at the campus of Korea University in 2018 (37.59°N, 87 

127.03°E), and at the site near the campus in 2019 (37.59°N, 127.08°E) (NIER, 2020) (Figure 88 

S1). Of the three sites, the Korea University campus and Olympic Park have served as 89 
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measurement sites representing the air quality of Seoul. In fact, it has been known that O3 and 90 

PM2.5 levels are strongly influenced by the synoptic circulation throughout the Korean 91 

peninsula (Peterson et al., 2019;Jordan et al., 2020). In addition, trace gases including O3, NO2, 92 

CO, and SO2 and meteorological parameters including temperature (T), relative humidity (RH), 93 

wind speed (WS) and direction (WD) were measured. The measurement statistics are presented 94 

in Table 2 and Table S1. Briefly summarizing, the 10th and 90th percentile mixing ratios of 95 

HONO, NO2, and O3 are 0.3 ppbv and 1.9 ppbv, 10.7 ppbv and 48.2 ppbv, and 12.0 ppbv and 96 

80.9 ppbv, respectively for the entire experiment periods.  97 

 98 

2.2. Preparation of input data  99 

 100 

In the next step, the observation data set was prepared for RNDv1.0 model construction. 101 

As input variables, chemical and meteorological parameters are used, including the mixing 102 

ratios of O3, NO2, CO, and SO2, along with temperature (T), relative humidity (RH), wind speed 103 

(WS), wind direction (WD), and solar zenith angle (SZA) to estimate the target species, HONO, 104 

as the output. Wind direction in degrees should be converted to a cosine value for continuity. 105 

For data integrity, there should be no missing values in the input dataset. Finally, 50.7 % of all 106 

arrays of available measurement data (1636) were used to construct the RNDv1.0 in this study. 107 

Since the measurements of these nine variables vary over a wide range in different units, 108 

they were normalized to avoid bias during the calculations. Among the widely used 109 

normalization methods, ‘min-max scaling’ method was adopted and input variables were 110 

normalized against the minimum and maximum values in this study (Eq. 1):  111 

 112 

xsca = xraw−F2(X)
 F1(X)

,         (1)  113 

 114 

where xraw is raw data of input variable (X), xsca is scaled data of X, F1 and F2 are scale 115 

factors of X, and are given for each input variable used in Table 2.  116 

 117 
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2.3. Neural network architecture and hyperparameters 118 

 119 

At this stage, the network is built to calculate HONO using those input variables. The 120 

RNDv1.0 is composed of five hidden layers (Figure 2), which employed an exponential linear 121 

unit (ELU) as an activation function (Eq. 2).  122 

 123 

ELU :  ϕ(𝑥𝑥) =  �e
𝑥𝑥 − 1 (𝑥𝑥 < 0)
𝑥𝑥 (𝑥𝑥 ≥ 0) .      (2) 124 

 125 

In a DNN, an activation function creates a nonlinear relationship between an input 126 

variable and an output variable. When constructing a DNN model, an ELU has the advantage 127 

of a fast-training process and better performance in handling negative values than other 128 

activation functions (Wang et al., 2017a;Ding et al., 2018). In addition, the mean squared error 129 

and Adam optimizer were applied as loss function and optimize function, respectively. The 130 

learning rate, epoch, and batch were set to 0.01, 100, and 32, respectively.  131 

 132 

2.4. Train and validation  133 

 134 

The RNDv1.0 model was trained and validated with HONO measurements obtained during 135 

May ~ June in 2016 and 2019, and tested against those obtained in June 2018 and April 2019 136 

(Figure 3). The number of data used for train and validation, and test were 1122 and 514, 137 

respectively. 138 

With the hyperparameters specified in previous section, the performance of the model was 139 

validated using the k-fold cross-validation method, which is especially useful when the size of 140 

dataset is small (Bengio and Grandvalet, 2003). In the k-fold cross-validation method (Figure 141 

3), the entire data is randomly divided into k subsets, of which k-1 sets were used for training 142 

and the rest one was used for validation. k was set to 5 in this study. The accuracy was 143 

determined by Index Of Agreement (IOA) and Mean Absolute Error (MAE) expressed by the 144 

following equation (Eq. 3, Eq. 4):  145 
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 146 

IOA = 1 −  ∑ (Oi−Pi)2n
i=1

∑ (|Pi−O�|+|Oi−O�|)2n
i=1

,       (3)  147 

MAE = ∑ |Oi−Pi|n
i=1

𝑛𝑛
,         (4)  148 

 149 

where 𝑂𝑂𝑖𝑖, 𝑃𝑃𝑖𝑖, 𝑂𝑂�, and n are the observed value, predicted value, average of the observed 150 

values, and number of nodes, respectively. The overall accuracy of  151 

As IOA and MAE vary according to the number of nodes, they were calculated for the 152 

measured (HONOobs) and calculated (HONOmod) mixing ratios by varying the number of nodes 153 

from 0 to 100 in each hidden layer. The best performance was found with 41 nodes, with which 154 

the averaged IOA and MAE were 0.89 ± 0.01 (mean ± standard deviation) and 0.31 ± 0.02 ppbv, 155 

respectively (Figure 4). The high level of IOA and low MAE demonstrates that the performance 156 

of RNDv1.0 model is adequate, and it is capable of simulating the ambient HONO mixing ratio 157 

using the routinely measured chemical and meteorological parameters. In particular, MAE was 158 

commensurate with the detection limit of HONO measurement. 159 

After the network validation, HONO mixing ratio was calculated for May ~ June in 2016 160 

and 2019, and the model results were compared with the measured values (Figure 5). The 161 

average mixing ratios of measured and calculated HONO was 0.94 ppbv and 0.89 ppbv in 2016, 162 

and 1.02 ppbv and 0.96 ppbv in 2019, respectively. The MAE and IOA of the measurement and 163 

calculation were 0.27 ppbv and 0.90 in 2016, and 0.29 ppbv and 0.91 in 2019, respectively, 164 

demonstrating the ability of the RNDv1.0 to simulate ambient HONO levels. In both cases, 165 

however, the model slightly underestimated the highest and lowest HONO mixing ratios, which 166 

is mainly due to the limited number of data used for training, but also related to the intrinsic 167 

nature of DNN. The model calculation well captured the diurnal variation of ambient HONO 168 

with a slight underestimation (Figure 6). In addition, the correlation between HONOmod and 169 

HONOobs was better in 2019 (MAE = 0.06 ppbv) than in 2016 (MAE = 0.08 ppbv). Since the 170 

MAE of the two cases was far below the detection limit of HONO measurements (~ 0.1 ppbv), 171 

the RNDv1.0 is considered adequate to simulate HONO in urban areas. 172 

 173 

2.5. Performance test   174 
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 175 

Finally, the RND model was tested against the measurement data obtained in June 2018 176 

and April 2019. The calculated HONO mixing ratios are compared with those measured in 177 

Figure 7, and their MAE and IOA are listed in Table 3. The two sets of model performance test 178 

showed that the model reasonably traced what was observed. In June 2018, the MAE and IOA 179 

of the calculated and measured are comparable to those of validation. However, the MAE and 180 

IOA of the April 2019 measurements were relatively poor compared to the validation results. 181 

Especially, the MAE of the April 2018 is about twice as high as those of validation. In these 182 

two test periods, HONO levels were lower than those observed on validation days (Figure 5), 183 

and the model tended to overestimate high HONO concentrations, unlike in the validation case. 184 

The discrepancy is probably due to seasonality: the difference in meteorological and chemical 185 

regime of the atmosphere. For example, the monthly average temperature, relative humidity, 186 

and NO2 mixing ratio of Seoul in 2019 were 12.1 ℃, 50.9 %, and 29 ppbv in April 2019 and 187 

22.5 ℃, 60.6 %, and 21 ppbv in June 2019 (https://cleanair.seoul.go.kr; https://weather.go.kr). 188 

Note that the RNDv1.0 model was trained with the 9 variables measured in early summer (Table 189 

2). Therefore, the more measurement data spanning a full year for training, the more accurate 190 

the model estimates will be.  191 

 192 

3. Operation and application of RNDv1.0 193 

 194 

The RNDv1.0 package is provided as an operational model, .h5 files that can be opened in 195 

Python. To run the RNDv1.0, the measurement data for nine input variables are required and 196 

need to be properly prepared as described in Section 2.2. A sample of preprocessed input dataset 197 

is provided as a .csv file (Dataset_for_model.csv). Once the input data is ready, open the RND 198 

model with input data files using the code provided in the example (Figure S2). Then, RND 199 

v1.0 calculates and presents the HONO results as scaled values (xsca), which will be finally 200 

converted to HONO mixing ratio (ppbv) by the two scale factors in Table 2 (Eq. 5):  201 

 202 

HONO (ppbv) = HONOsca × F1(HONO) + F2(HONO).   (5) 203 
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 204 

The result of the RNDv1.0, HONO, can be applied to an urban photochemical cycle 205 

simulation. It is already known that the photolysis of HONO is a major source of OH radicals 206 

in the early morning when the OH level is low, and this OH affects daytime O3 formation 207 

through photochemical reactions with VOCs and NOx, which are primarily emitted during 208 

morning rush hour in urban areas. Therefore, the OH produced from HONO expedites 209 

photochemical reactions, promoting O3 formation. However, the HONO formation mechanism 210 

is still poorly understood, and concentrations are not correctly simulated in conventional 211 

photochemical models; therefore, the absence of HONO causes great uncertainty in O3 212 

prediction (Figure 8).  213 

The 0-Dimension Atmospheric Modelling (F0AM) utilizing the MCM v3.3.1 chemical 214 

reaction mechanisms (Wolfe et al., 2016), can be used to simulate the diurnal variation of O3 215 

with the measurements of several reactive gases (NO, NO2, CO, HCHO, VOCs, and HONO). 216 

Detailed information about F0AM can be found in 217 

(https://sites.google.com/site/wolfegm/models) and in previous works published elsewhere 218 

(Wolfe et al., 2016; Gil et al., 2020). When the F0AM model is run without HONO, it is not 219 

able to reproduce the concentration and diel cycle of the observed O3 (Figure 8). In comparison, 220 

the model simulates the O3 well within 2 ppbv when adding HONO, which is the product of 221 

RND v1.0. This is mainly due to the missing OH produced by HONO photolysis in the early 222 

morning. Its production rate is estimated to be 0.57 pptv s-1, contributing approximately 2.28 223 

pptv to OH budget during 06:00 ~ 11:00 (LST) (Gil et al., 2021). Given that OH is mainly 224 

produced from the photolysis of O3 under high sun, the early morning source of OH will 225 

expedite the photochemical cycle involving NOx and VOCs, promoting O3 and secondary 226 

aerosol formation. Since the presence of HONO in the photochemical model allows for accurate 227 

estimation of OH radicals, the incorporation of RND into conventional models will improve 228 

their overall performance.  229 

 230 

4. Summary and implications 231 

 232 
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In this study, we developed the RND model to calculate the mixing ratio of NOy in an urban 233 

atmosphere using a DNN along with measurement data. The target species of RNDv1.0 is 234 

HONO, and its mixing ratio is calculated using trace gases including O3, NO2, CO, and SO2, 235 

and meteorological variables including T, RH, WS, and WD, along with the SZA. These 236 

variables are routinely measured through monitoring networks. The RNDv1.0 was trained and 237 

validated using the HONO measurements obtained in Seoul by adopting a k-fold cross 238 

validation method and tested with other HONO datasets measured using the same instrument. 239 

The validation and test results demonstrate that RND adequately captures the characteristic 240 

variation of HONO and confirms the efficacy of RND v1.0. 241 

RNDv1.0 was constructed using measurements made in a high NOx environment during 242 

early summer (May–June). It is noteworthy that in this period, the HONO mixing ratio was 243 

raised above 3 ppbv with the highest O3 levels under stagnant conditions. If RND is applied to 244 

areas under significant influence of outflows, the model possibly overestimates or 245 

underestimate the level of HONO without detailed information such as nanoparticles. In the 246 

previous study, the formation of HONO was shown to be intimately related with surface areas 247 

of submicron particles (Gil et al., 2021). Nevertheless, the HONO volume mixing ratio 248 

produced from simple codes in RNDv1.0 with routine measurements provides the benefit of 249 

relatively inexpensive test for the current knowledge of the urban photochemical cycle. 250 

Therefore, it is reasonable to argue that RND can serve as a supplementary tool for conventional 251 

photochemical models.  252 

 253 
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Figures and Tables 275 

 276 

 277 

Figure 1. The main processes for configuring the RNDv1.0 (*: calculated values)  278 
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  279 

Figure 2. The structure of deep neural network built for RND v1.0. 280 

 281 

  282 
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 283 

Figure 3. Design of training, validation, and test to build RNDv1.0 using measurement data. 284 

Training and validation were performed pairs using k-fold cross validation. Five subsets were 285 

randomly divided. 286 

 287 

  288 
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 289 

Figure 4. Index Of Agreement (IOA) for k-fold cross validation. Solid circle and red line 290 

represent IOA for each validation (k=5) and the average of 5 validation sets at each node number. 291 

  292 
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 293 

Figure 5. Comparison between the measured (HONOobs) and calculated (HONOmod) HONO 294 

mixing ratios in Seoul during May~June in (a) 2016 and (b) 2019. The blue and red lines 295 

indicate the measured and calculated HONO mixing ratio, respectively. 296 

  297 
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 298 

Figure 6. Average diurnal variations of the measured (HONOobs) and the calculated (HONOmod) 299 

HONO mixing ratios in Seoul during May ~ June in (a) 2016 and (b) 2019.  300 

  301 
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 302 

Figure 7. Comparison between the measured (HONOobs) and calculated (HONOmod) HONO 303 

mixing ratios in Seoul during (a) June 2018 and (b) April 2019. The blue and red lines indicate 304 

the measured and calculated HONO mixing ratio, respectively. The x axis indicates the hour 305 

from the beginning of the experiment, which is (a) 00:00 on 1st June 2018 and (b) 00:00 on 12th 306 

April 2019. 307 

 308 
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 310 

Figure 8. For June 2016, diurnal variations of O3 (line) and OH production rate (bar) calculated 311 

from the F0AM photochemical model with (orange) and without (blue) HONO estimated from 312 

the RNDv1.0 model. The measured O3 is compared with the calculated.  313 

  314 
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Table 1. Resources for constructing RND model. 315 

 Version Remark 

Python v3.8.3  

CUDA v10.1 *If using GPU 

CuDNN v7.6.5 *If using GPU 

Tensorflow v2.3.0 Python library 

Keras v2.4.3 Python library 

Pandas v1.0.5 Python library 
Numpy v1.18.5 Python library 

*GPU denotes graphic processing unit  316 
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Table 2. Input variables of the RNDv1.0 model and their ranges (10th and 90th percentile) 317 

observed in Seoul during May ~ June in 2016 and 2019.  318 

 
10th~90th percentile 

(unit) 

Coverage 

 (%) 

Scale Factor1 

(F1)* 

Scale Factor 2 

(F2)** 

Input Variables 

O3 12.1 ~ 90.4 (ppbv) 95.5  204.738 0.842 

NO2 11.0 ~ 48.6 (ppbv) 80.6 79.925 2.375 

CO 252 ~ 743 (ppbv) 95.1 975.248 137.253 

SO2 1.9 ~ 6.4 (ppbv) 95.6  12.479 0.958 

Solar Zenith Angle  22.7 ~ 118.4 (º) 100.0 112.317 14.195 

Temperature 15.9 ~ 26.7 (°C) 99.4  24.240 8.610 

Relative Humidity 29.2 ~ 79.1 (%) 99.4  88.545 10.555 

Wind Speed 0.2 ~ 3.7 (m/s) 99.4  7.581 0.005 

Wind Direction 45.4 ~ 287.5 (º) 99.4  359.565 0.235 

Output Variables 

HONO 0.3 ~ 2.0 (ppbv) 81.1% 3.447 0.013 
* Maximum – Minimum 319 

** Minimum value 320 

  321 
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Table 3. The result of validation and test of RNDv1.0 model using measurement data. 322 

Measurement data 
Validation Test 

MAE (ppbv) IOA MAE (ppbv) MAE 

May 2016 0.26 0.93   

June 2016 0.29 0.86   

June 2018   0.21 0.79 

April 2019   0.56 0.65 

May 2019 0.26 0.93   

June 2019 0.36 0.76   

 323 

  324 
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